Seaweed FARMING

The Cover

Harvest of seaweeds at the Regional Seaweed Nursery Farm, Brgy Ngolos, Guiuan, Eastern Samar. This seaweed nursery is one of the BFAR 8-maintained nurseries in the region. Harvested seaweeds are distributed through the Bureau's seaweed dispersal program and rollover scheme.

Fisheries Technology Series 1 November 2014

Seaweed Farming Kappaphycus and Eucheuma

Department of Agriculture Bureau of Fisheries and Aquatic Resources 8 Tacloban City

Contents

Introduction	1
Species of seaweeds to culture	2
Where to get your 'seedlings'	3
Where to culture seaweeds	4
How to culture seaweeds	5
Preparation of planting materials	5
Preparation of 'seedlings'	6
Culture methods	8
Farm maintenance	14
Harvesting	14
Post harvest	15
Cleaning	15
Drying	15
Top quality dried seaweeds	16
Marketing	17
Problems in seaweed farming	18
Diseases	18
Grazing	21
Economics	22
Bottom monoline	22
Modified single floating monoline	25
Modified modular floating monoline	28
Market outlets for dried seaweeds	31
References	33

Introduction

Seaweeds are macro-benthic algae. They are plants that are found in marine waters. They are non-vascular plants, which means they do not have roots, stems and leaves. Like any other plants, they use light energy and convert it to utilizable energy in the process called photosynthesis.

The importance of seaweeds can be viewed into two perspectives: ecological value and economic uses. It serves as habitat and breeding ground for many marine organisms. Depending on the species, it is also a healthy source of human food and raw materials for phycocolloid products such as agar and carrageenan. These products are used in food industries, cosmetics, pharmaceutical, household products and biotechnology.

In the Philippines, the farming of seaweeds is an established industry. It is now emerging as an important and a major livelihood among coastal communities. It is also one of the top export products of the country. Based on the report of BAS (2011), seaweeds contributed about 1,840,832.86 metric tons or 70.58% of the country's total aquaculture production. Most of these seaweeds were farmed using economically-feasible culture methods.

This manual provides basic information and important instructions in the farming of *Kappaphycus* and *Eucheuma*. This will surely assist seaweed farmers and technicians, particularly in the Eastern Visayan region, which the industry currently needs.

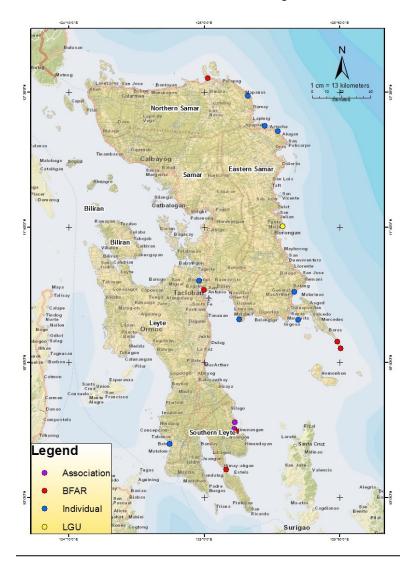
Species of seaweeds to culture

Kappaphycus alvarezii

- locally known as *tambalang* or *guso*; cultured varieties of this species are in brown, dark or lighter green

Eucheuma denticulatum

- locally known as *spinosum*; cultured varieties are in brown, green and red varieties



Kappaphycus striatum

- locally known as sacol

Where to get your 'seedlings'

Seedlings may be acquired to any of these BFAR-maintained seaweed nurseries in the Region.

Where to culture seaweeds

The most important aspect in developing a productive seaweed farm is site selection. The farming site must be assessed prior to culture and should conform to the following criteria:

- moderate water movement and free from big waves
- adequate light penetration, not turbid
- sufficient water depth; to culture seaweeds in shallow areas, the planting materials should not be exposed during low tides as this is damaging to the farmed seaweeds
- the substratum or bottom should be coarse sandrocky to corally
- optimum temperature range 27-30 °C
- salinity level of 30-35 ppt; far from freshwater source (river mouth) or brackish water areas should be avoided
- clean and clear seawater; free from siltation and pollution
- for fixed-bottom method, the site should be subtidal and shallow; in deeper areas, floating monoline is recommended

How to culture seaweeds

PREPARATION OF PLANTING MATERIALS

Any of the following materials can be used

Cultivation line

- monofilament (nylon) no. 80 and 300
- polyethylene rope no. 24 & 18

Tying material

 softie plastic twine (straw)

Support materials

- bamboo poles
- sinkers
- Sandbags
- Knife
- Counter weights

Floaters

- buoys
- empty plastic bottles

PREPARATION OF 'SEEDLINGS'

- Select good quality seedlings. Choose luxuriant and young branches (thalli) with sharp pointed tips for planting.
- Seedlings should have no traces of grazing or early signs of *ice-ice*. Use a clean, sharp-edged, stainless steel knife for cutting to leave a smooth surface on the branch.
- Clean the seedlings and remove all attaching debris.
- Seedlings or cuttings are approximately 200 grams.
- Tying of seedlings should be done in the shore.
 Tie the plant at its strongest branch using an 8-inch soft plastic twine. The weight should be balanced on both sides of the *tie-tie*. Provide a 1.0 cm space in tying the plant for growth.
- Immerse the seedlings in seawater to prevent from drying before planting.

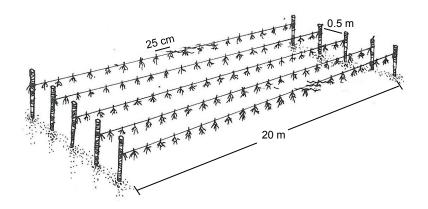
Preparation of the seedlings for planting

CULTURE METHODS

Bottom monoline method

The bottom monoline or fixed off-bottom method is used in shallow areas near shore. This method requires low investment, easy to install and farm maintenance is cheaper.

Site


- shallow water; water depth should not <0.5 m
- sandy-corally bottom
- presence of other seaweeds as indicator of growth
- clean and clear water

Construction

- 1. Clear the site of undesirable organisms.
- 2. Stake the poles into a strong substrate (steel bars or bamboos) for about 20 m apart.
- Tie the monofilament nylon or polyethylene ropes in the stakes. The cultivation lines are installed perpendicular to the prevailing water current and tied at fixed intervals to allow water movement and passage. The lines are also hanging and not touching the bottom.
- 4. Distance of rows of stakes is 0.5 m apart. The cultivation lines are 30-40 cm from the bottom at the lowest tide.

Tying

1. Tie the seedlings or 'tie-tie' firmly to the cultivation lines at 25 cm intervals.

Seaweed farming using bottom monline method in Dawahon, Bato, Leyte

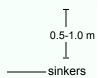
Floating monoline method

This method is used in deep waters (5-10 m high). It needs a good anchorage to avoid the farm to be carried away in times of strong currents.

Grazing by benthic (bottom) animals is minimized or eliminated in this method. The seaweeds are raised above, approximately 30 cm submerged in the water from the surface.

1. Modified single floating monoline

Site


- moderate water movement
- protected from big waves
- availability of good anchorage
- deep water (>10 m high) or water depth of 5 fathom or more at the lowest tide

Construction

- Install 95 m (1 kg monofilament nylon) cultivation line parallel to the prevailing water current.
- 2. Anchor the cultivation line using sandbags on both ends and provide buoys as markers.
- Tie empty plastic bottles (floaters) at close intervals along the cultivation line. The floaters are tied in the line to keep it afloat at approximately 0.5 to 1.0 cm below the water surface.

Tying

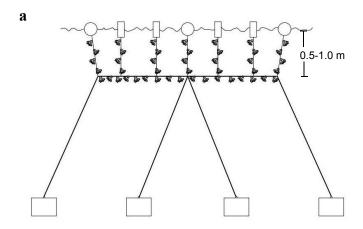
1. Tie the seedlings or 'tie-tie' firmly to the cultivation and buoy lines at 25 cm intervals.

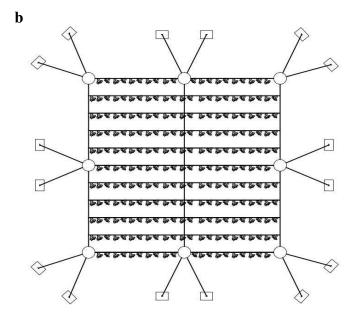
Modified single floating monoline method in San Julian, Eastern Samar

2. Modified modular floating monoline

One modification of the floating monoline method is by using PE rope no. 26 as mother line.

Site selection ollows the same criteria as the single floating monoline.


Construction


- Install mother lines using PE rope no. 26 making a 50 x 20 m rectangular plot. The 20-m mother lines should be parallel to the water current.
- Place sandbags and buoys at the corners and in between as anchorage and markers, respectively.
- Tie empty plastic bottles (floaters) at close intervals along the cultivation line. The floaters are tied in the line to keep it afloat at approximately 0.5 to 1.0 m below the water surface.

Tying

1. Tie the seedlings or 'tie-tie' firmly to the cultivation and buoy lines at 25 cm intervals.

Modified modular floating monoline: a) side view; b) top view

FARM MAINTENANCE

The seaweed farm should be cleaned and cleared of silt, floating debris, tying materials and macrograzers that adhere to the seaweeds. This is done by shaking the cultivation lines regularly. Epiphytes or species of algae other than the farmed seaweed should be removed as these compete for nutrients, light and space.

Undesirable materials and seedlings which look diseased should be removed. Poor-growing and lost seedlings should be replaced immediately. When a disease spreads in the farm, total harvest is recommended.

HARVESTING

Harvesting of seaweeds is a simple work to do. Harvest is done after 50 days of culture. It can be harvested by:

- untying both ends of the cultivation lines from the stakes and the lines with seaweeds are brought to the shore (fixed off-bottom monoline method)
- cutting the straws with seaweeds individually from the cultivation lines (floating monoline method)
- · partial harvesting or pruning

Post harvest

CLEANING

After harvesting, the seaweeds should be washed with clean seawater to maintain a high quality product. Avoid contact with fresh water as this will reduce salt content, degrade carrageenan and storage quality.

Remove the following materials:

- non-cultured seaweeds
- Silt, sand and stones
- plastic straw twine
- wood and dead leaves
- other foreign material that adhere to the harvested seaweeds

DRYING

It is recommended to dry seaweeds off the ground right after cleaning and sorting. This method allows air to circulate more rapidly, thus shortening the drying period.

Drying is done for 2-3 days during sunny days and 4-5 days when cloudy. Harvested

seaweeds should be laid down in platforms or spread in hanging lines for fast drying. Turn-over the seaweeds for consistent dryness.

Drying of seaweeds in hanging lines and platforms

TOP QUALITY DRIED SEAWEEDS

A top quality dried seaweed has an average moisture content of 35% (range, 30-39%). It has been sorted in one species only, consistently dried, free of sand and foreign materials, stored properly, protected from rain and transported within several days to prospect buyers.

STORAGE

Dried seaweeds must be stored in the shortest possible time in a clean, dry and well-ventilated place. Pack dried seaweeds in clean sacks. Never store wet seaweeds.

Storage of dried seaweeds in sacks and polyethylene bags

Marketing

There are many seaweed traders/buyers in the country. The common practice in the marketing of seaweed is from farmer/producer through local traders to exporters or processors. It is channelled to several buyers before it reaches the processors.

Some of the traders and exporters of seaweeds are listed at the last pages of this manual.

Problems in seaweed farming

DISEASES

Health management in seaweed farms is primarily done with proper site, species selection and farm maintenance. However if not properly managed, various diseases may invade the farm.

There are two important diseases encountered in the farming of *Kappaphycus* and *Eucheuma* that have especially caused detrimental problems to farms. These are:

Ice-ice disease - characterized by general paling or loss of color in the early stages of infection. It is caused by low salinity, temperature and light intensity. When the plant is under these stressful conditions, it exudes an organic substance which is muscilaginous in nature, and the presence of opportunistic bacteria in the water column aggravates the whitening of the branches

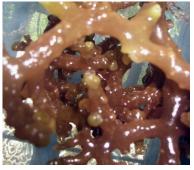
Epiphyte infestation - epiphytes refer to organisms, small or large, that colonize or attached to the surfaces of seaweeds. It becomes harmful when it causes considerable damage to the cultured seaweed such as creating wounds and fragmentation or disintegration. Possible factors that trigger the occurrence of epiphytes include:

- state of health of the seaweed
- no water movement
- extreme water temperature
- low salinity
- highly turbid waters

Seaweed diseases: ice-ice and epiphytes infestation

Thallus color and growth rates are indicative of the health of the cultured seaweeds. Aside from *ice-ice*, the following are the commonly encountered thallus conditions that every farmer should be aware of:

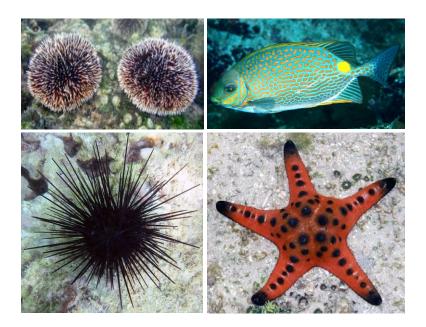
Pitting - usually occurs at the cortical layer wherein a cavity is formed mainly due to mechanical wound, however, the cortical layer is regenerative


Tip darkening - this is due to senescence (old-age) and cold water which result to loss of color and consequently disintegration, however, seaweed tips can grow back

Tip discoloration - is due to aerial exposure and intolerance to warm waters; there is a change toward pinkness and eventual softening of the tips, followed by further discoloration, finally becoming white, and later dissolving away

Slowing of growth (stunted growth) - this is mainly due to 1) appearance of epiphytes, 2) pigment loss, 3) tissue softening, 4) general decay, 5) poor season and 6) poor site

Die-off - is initially manifested by discoloration which is mainly brought by pools of freshwater run-off


Seaweed diseases: tip discoloration and stunted growth

GRAZING

Aside from diseases, grazing is one big problem in seaweed farms. If not minimized, it can wipe out a whole farm. Grazers come in two forms:

Micrograzers - animals less than 2 cm long which take up residence feed on the thallus. These are nematodes and planktonic stage of marine invertebrates)

Macrograzers - in general, animals that are bigger than 5 cm (fish and adult marine invertebrates). Rabbitfish, sea urchin and starfish are common macrograzers.

Macrograzers: Rabbitfish (danggit), starfish and sea urchins

Economics

Bottom monoline

ASSUMPTIONS

Area 2,520 m²

Description 20 m/line x 250 lines

Seedling requirement 4,125 kg

(20 m/line x 5 tie-tie/m = 100 tie-tie/line x)

250 lines = 25,000 @ 150 g tie-tie = 3,750 kg + 10% biological loss

Culture period 50 days

Cropping/year 5

Total harvest

per cropping (wet wt) 16,500 kg

Less

Seedling for the

next cropping 4,125 kg Biological loss 1,650 kg

Yield (wet wt) 10,725 kg Drying ratio 7:1

Dry wt/cropping 1,532.14 kg Price/kg Php 50.00

Items	Quantity	Unit Cost (PhP)	Total Cost (PhP)	Economic Life (Year)
Polyrope No. 7	25 rolls	400	10,000	3
Dug-out banca	1 unit	5,000	5,000	3
Bull hammer	2 pcs	350	700	3
Stilt dryer (with guardhouse, 200 m ²	1 unit	4,000	4,000	3
TOTAL	·		0	

DEPRECIATION

Economic life	3 years
Total cost	65,700
Depreciation cost (DC)	21,900

OPERATING COST

Items	Quantity	Unit cost (PhP)	Total cost (PhP)
Seedlings Plastic straw	4,125 kg	12.00	49,500.00
(soft tie) Wooden posts	25 rolls	80.00	2,000.00
(1/2 m)	750 pcs	30.00	22,500.00
TOTAL			74,000.00

Total operating cost

= P74,000 per 1/4 ha + P600 (knives) + P24,000 (salary of 1 person for 8 months)

= P98,600

Total sales

= P1,532.14 kg/cropping x 5 croppings x P50.00/kg

= P383,035

Transport cost

 $= P1.00/kg \times 7,660.7 kg$

= P7,660.7

Total projected cost

TOTAL	P171,960.70
Transport cost	7,660.70
Operating cost	98,600.00
Fixed cost	P65,700.00

PROJECTED INCOME STATEMENT

	Year 1	Year 2	Year 3
Revenues Sales of seaweeds Gross revenues	383,035.00 383,035.00	383,035.00 383,035.00	383,035.00 383,035.00
Less Fixed cost Operating cost Depreciation cost Transport cost	65,700.00 98,600.00 21,900.00 7,660.07	98,600.00 21,900.00 7,660.70	98,600.00 21,900.00 7,660.70
Sub-total	193,860.70	128,160.70	128,160.70
NET INCOME Average Net Incom	189,174.30 e	254,874.30	254,874.30 232,974.30

A. Return of Investment

- = (Ave. Net Income / Initial Investment) x 100
- $= (232,974.30 / 171,960.70) \times 100$
- = 135%

B. Cash Payback Period

- = Total Projected Cost / Ave. Net Income
- = 171,960.70 / 232,974.30
- = 0.74 year

C. Break Even Price

- = (Total Variable Cost + DC) / Transport Cost
- = (171,960.70 + 21,900) / 7,660.70
- = P25.31

D. Break Even Production

- = (Total Variable Cost + DC) / Unit Selling Price
- = (171,960.70 + 21,900) / 50
- = P3,877.21 kg

Modified single floating monoline ASSUMPTIONS

Area 2,520 m²

Description 84 m/line x 15 lines

Seedling requirement 154.0 kg

(84 m/line x 5 tie-tie/m = 420 tie-tie) (Horizontal) + 5 tie-tie/float x 56 floats = 280 tie-tie (Vertical) x 200 g/tie-tie

+ 10% biological loss

Culture period 50 days

Cropping/year 5

Total harvest

per cropping (wet wt) 616.0 kg

Less

Price/kg

Seedling for the

next cropping 154.0 kg
Biological loss 61.6 kg
Yield (wet wt) 400.4 kg
Drying ratio 7:1
Dry wt/cropping 57.2 kg

Items	Quantity	Unit Cost (PhP)	Total Cost (PhP)	Economic Life (Year)
Polyrope, 9mm	4 rolls	1,300	5,280	3
Empty Plastic jug, 20 qts. cap	45 pcs	150	6,750	3
Empty rice sacks	285 pcs	12	3,420	3
Dug-out banca	1 unit	5,000	5,000	3
Dryer (2 x 5 m)	1 unit	5,000	5,000	3
Nylon (260 lbs, 300 mm, 95 m)	20 kg	295	5,900	2
Nylon # 80	1 kg	290	290	2
TOTAL			P31,640	

Php 50.00

DEPRECIATION

Economic life	2 years	3 years	
Total cost	6,190.00	25,450.00	
Depreciation cost (DC)	3,095.00	8,483.34	11,578.34

OPERATING COST

Items	Quantity	Unit cost (PhP)	Total cost (PhP)
Seedlings Plastic twine	154 kg	12.00	1,848.00
(soft tie) Empty plastic	1/2 roll	180.00	90.00
bottles	56 pcs	2.00	112.00
TOTAL			2,050.00

Total operating cost

= P2,050/line x 15 lines + P600 (knives) + P48,000 (salary for 2 person for 8 months at P3,000/monthly) = **P79,350**

Total sales

= P57.2 kg/line x 15 lines x 5 croppings x P50.00

= P214,500

Transport cost

= P1.00/kg x 4,290 kg

= P4,290

Total projected cost

TOTAL	P115,280.00
Transport cost	4.290.00
Operating cost	79,350.00
Fixed cost	P31,640.00

PROJECTED INCOME STATEMENT

	Year 1	Year 2	Year 3
Revenues Sales of seaweeds Gross revenues	214,500 214,500	214,500 214,500	214,500 214,500
Less Fixed cost Operating cost Depreciation cost Transport cost	31,640 79,350 11,578.34 4,290	- 79,350 11,578.34 4,290	- 54,600 12,560 4,290
Sub-total	126,858.34	95,218.34	71,450
NET INCOME	87,641.66	119,281.66	119,281.66
Average Net Income			108 735 00

Average Net Income

108,735.00

A. Return of Investment

- = (Ave. Net Income / Initial Investment) x 100
- $= (119,281.66/115,280.00) \times 100$
- = 104%

B. Cash Payback Period

- = Total Projected Cost / Ave. Net Income
- = 115,280/119,281.66
- = 0.97 year

C. Break Even Price

- = (Total Variable Cost + DC) / Transport Cost
- = (115,280+11,578.34) / 4,290
- = P29.57

D. Break Even Production

- = (Total Variable Cost + DC) / Unit Selling Price
- = (115,280+11,578.34) / 50
- = P2,537.17 kg

Modified Modular Floating Monoline ASSUMPTIONS

Description
Seedling requirement

50 m/line x 20 lines @ 1 m distance
Between lines

1,760 kg
(48 m/line x 5 tie-tie/m @200 g/tie-tie
x 20 lines = 960 kg (Horizontal);
32 floats/line @ 5 tie-tie/float x 20 lines
@ 200 g/tie-tie = 640 kg (Vertical) + 10%
biological loss

1.000 m²

Culture Period 50 Croppings/year 5

Total harvest

per cropping (wet wt) 7,040 kg

Less

Area

Seedling for the

next cropping 1,760 kg
Biological loss 704 kg

Yield (wet wt) 4,576 kg

Drying ratio 7:1

Dry weight/cropping 653.71 kg

Price/kg

Items	Quantity	Unit Cost (PhP)	Total Cost (PhP)	Economic Life (Year)
Polyrope, 9mm	2 rolls	1,320	2,640	3
Empty plastic jug	9 pcs	150	1,350	3
sacks	220 pcs	12	2,640	3
Dug-out banca	1 unit	5,000	5,000	3
Dryer (2 x 5 m)	1 unit	5,000	5,000	3
Nylon (260 lbs, 300 mm, 95 m)	16 kg	285	4,560	2
Nylon # 80	1 kg	290	290	2
TOTAL			P22,230	

DEPRECIATION

Economic life	2 years	3 years	
Total cost	5,600.00	16,630.00	
Depreciation cost	2,800.00	5,543.34.00	8,343.00

OPERATING COST

Items	Quantity	Unit cost (PhP)	Total cost (PhP)
Seedlings Plastic straw	1,760 kg	12.00	21,120.00
(soft tie) Empty plasti	2 rolls x 5 crops	180.00	1, 800.00
bottles	640 pcs	2.00	1,280.00

Total operating cost

= 24,200/module + 600 (knives) + 48,000 (salary for 2 persons for 8 months at P3,000/monthly) = **P72,800**

24,200.00

Total sales

TOTAL

= 653.71 x 5 croppings x P50/kg

= P163,427.50

Transport cost

 $= P1.00/kg \times 3,268.55 kg$

= P3,268.55

Total projected cost

TOTAL	P49,698.55
Transport cost	3,268.55
Operating cost	24,200.00
Fixed cost	P22,230.00

PROJECTED INCOME STATEMENT

	Year 1	Year 2	Year 3
Revenues Sales of seaweeds Gross revenues	163,427.50 163,427.50	163,427.50 163,427.50	163,427.50 163,427.50
Less Fixed cost Operating cost Depreciation cost Transport cost	22,230.00 24,200.00 8,343.00 3,268.55	24,200.00 8,343.00 3,268.55	24,200.00 8,343.00 3,268.55
Sub-total	58,041.55	35,811.55	35,811.55
NET INCOME	105,385.95	127,615.95	127,615.98

A. Return of Investment

- = (Ave. Net Income / Initial Investment) x 100
- $= (120,205.95/49,698.55) \times 100$
- = 242%

B. Cash Payback Period

- = Total Projected Cost / Ave. Net Income
- = 49,698.55/120,205.95
- = 0.42 year

C. Break Even Price

- = (Total Variable Cost + DC) / Transport Cost
- = (49,698.55+8,343) / 3,268.55
- = P17.76

D. Break Even Production

- = (Total Variable Cost + DC) / Unit Selling Price
- = (49,698.55+8,343) / 50
- = P1,160.84 kg

Market outlets for dried seaweeds

Tacloban

TBK manufacturing Corporation

Brgy Hollywood, Nula-tula, 6500 Tacloban City Product line: dried Kappaphycus and Eucheuma

Mr Peter Gan (Manager)

(053) 321-6720

Cebu

Shemberg Corporation

Jayme St., Pakna-an, Mandaue City 6014 Cebu

Product line: carrageenan

♠ Mr Bensoy U. Dacay (CEO)

(032) 346-0789; 345-1045

(032) 346-1892; 346-0863

MCPI Incorporated

- 1. Tugbongan, Consolacion 6000 Cebu City
- Suite 301-32 Casa Mendoza Bldg., A Cortes Ave., Mandaue City 6014 Cebu

Product line: carrageenan

Mr Maximo A. Ricohermoso (President)

(032) 346-3566

□ 0912-501-0890

(032) 346-0138; 346-0588

FMC Corporation

Ouano Compound, Looc, Mandaue City 6014 Cebu

Product line: seaweed flour

Ms Tita Tomayao (General Manager/VP)

(032) 346-0882

(032) 346-1182

CP KELAW

Sibonga, Cebu

Genu Philippines, Inc.

6/F Metrobank Plaza, Osmeña Bldg., 6000 Cebu City

Product line: dried and alkali-treated seaweeds

Mr Anastacio Camboanga (President/General Manager)

(032) 253-3053

(032) 253-0773

Biocon Philippines/Deltagen, Inc.

- Mactan Export Processing Zone, G/F SFB Pt. 1, Lapu-lapu City 6015 Cebu
- 2. Tabuk, Mandaue City 6014 Cebu

Product line: carrageenan

Ms Ernestina Elizalde

(032) 340-0322; 340-0319; 340-0764

(032) 340-0328; 340-0324

Geltech Hayco, Inc.

Cebu Office

2/F GCH Bldg., Tres Borces St., Mabolo 6000 Cebu City

♣ Engr Go Ching Hai

(032) 231-0388

旦 (032) 231-0103

nayco@geltech-hayco.com

Manila Office

2. 5/F Prosperity Bldg., 395 Banaue St., 1100 Quezon City

1 (02) 731-7714

(02) 740-5916

Manila

Marcel Trading Corporation

5/F First Marcel Tower, 926 Araneta Ave., 1104 Quezon City Product line: carrageenan

🚡 (632) 712-2631

(632) 712-1989; 712-5879

Individual (roaming) buyers

Mr. Maximo Cabanatan Sitio Converse, Brgy. Ngolos, Guiuan, Eastern Samar

Mr Claudio Rey Daño

Shellcraft Products Brgy Campoyong, Guiuan, Eastern Samar 09215631981, 09066418857

References

BAS. 2010. Fisheries Situationer. Department of Agriculture, Bureau of Agricultural Statistics, Manila. 19 p

Hurtado AQ, RF Agabayani. 2000. The farming of the seaweed *Kappaphycus*. SEAFDEC/AQD Extension Manual No. 32, Southeast Asian Fisheries Development Center Aquaculture Department, Tigbauan, Iloilo. 25 p

